Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.370
Filtrar
1.
J Chromatogr A ; 1721: 464812, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38569297

RESUMO

In this work, a novel and efficient approach for sodium hypochlorite analysis is proposed via phase-conversion headspace technique, which is based on the gas chromatography (GC) detection of generated carbon dioxide (CO2) from the redox reaction of sodium hypochlorite with sodium oxalate. The data obtained by the proposed method suggest the high detecting precision and accuracy. In addition, the method has low detection limits (limit of quantification (LOQ) = 0.24 µg/mL), and the recoveries of added standard ranged from 98.33 to 101.27 %. The proposed phase-conversion headspace technique is efficient and automated, thereby offering an efficient strategy for highly efficient analysis of sodium hypochlorite and related products.


Assuntos
Desinfetantes , Hipoclorito de Sódio , Desinfetantes/análise , Ácido Hipocloroso , Cromatografia Gasosa/métodos , Dióxido de Carbono/análise
2.
Se Pu ; 42(4): 387-392, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38566428

RESUMO

The residual amount of halogenated solvents in olive oil is an important indicator of its quality. The National Olive Oil Quality Standard GB/T 23347-2021 states that the residual amount of individual halogenated solvents in olive oil should be ≤0.1 mg/kg and that the total residual amount of halogenated solvents should be ≤0.2 mg/kg. COI/T.20/Doc. No. 8-1990, which was published by the International Olive Council, describes the standard method used for the determination of halogenated solvents in olive oil. Unfortunately, this method is cumbersome, has poor repeatability and low automation, and is unsuitable for the detection and analysis of residual halogenated solvents in large quantities of olive oil. At present, no national standard method for determining residual halogenated solvents in olive oil is available in China. Thus, developing simple, efficient, accurate, and stable methods for the determination of residual halogenated solvents in olive oil is imperative. In this paper, a method based on automatic headspace gas chromatography was established for the determination of residual halogenated solvents, namely, chloroform, carbon tetrachloride, 1,1,1-trichloroethane, dibromochloromethane, tetrachloroethylene, and bromoform, in olive oil. The samples were processed as follows. After mixing, 2.00 g (accurate to 0.01 g) of the olive oil sample was added into a 20 mL headspace injection bottle and immediately sealed for headspace gas chromatography analysis. Blank virgin olive oil was used to prepare a standard working solution and the external standard method for quantification. The solvents used in the preparation of halogenated solvent standard intermediates were investigated and methanol was selected as a replacement for N,N-dimethylacetamide to prepare a halogenated solvent standard intermediate owing to its safety. The effects of different injection times (1, 2, 3, 4, 5, 6 s), equilibration temperatures (60, 70, 80, 90, 100, 110, 120 ℃), and equilibration times (4, 5, 8, 10, 20, 30, 40 min) of the headspace sampler on the detection of the residual amounts of the six halogenated solvents were investigated. The optimal injection time and equilibration temperature were 3 s and 90 ℃, respectively. The method demonstrated good analytical performance for the six halogenated solvents when the equilibration time was 30 min. A methodological study was conducted on the optimized method, and the results showed that the six halogenated solvents exhibited good linear relationships in the range of 0.002-0.200 mg/kg, with correlation coefficients of ≥0.9991. The limits of detection (LODs) and quantification (LOQs) of 1,1,1-trichloroethane and bromoform were 0.0006 and 0.002 mg/kg, respectively. The LODs and LOQs of chloroform, carbon tetrachloride, dibromochloromethane, and tetrachloroethylene were 0.0003 and 0.001 mg/kg, respectively. The average recoveries under different spiked levels were 85.53%-115.93%, and the relative standard deviations (n=6) were 1.11%-8.48%. The established method was used to analyze 13 olive oil samples available in the market. Although no halogenated solvents were detected in these samples, a limited number of samples does not represent all olive oils. Hence, monitoring residual halogenated solvents in olive oil remains necessary for its safe consumption. The LOQs of the method for the six halogenated solvents were significantly lower than that of the COI/T.20/Doc. No. 8-1990 standard method (0.02 mg/kg). In addition, the developed method can be conducted under short operation times with high precision and degree of automation as well as good accuracy. Thus, the proposed method is suitable for the determination and analysis of the residues of the six halogenated solvents in large batches of olive oil samples.


Assuntos
Tetracloroetileno , Tricloroetanos , Azeite de Oliva , Solventes/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Tetracloroetileno/análise , Clorofórmio/análise , Tetracloreto de Carbono/análise , Cromatografia Gasosa/métodos , Trialometanos
3.
J Chromatogr A ; 1720: 464764, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38458137

RESUMO

The limit of detection (LOD) is a crucial measure in analytical methods, representing the smallest amount of a substance that can be distinguished from background noise. In the realm of gas chromatography (GC), however, determining LOD can be quite subjective, leading to significant variability among researchers. In this study, we validate the Hubaux-Vos method, an International Standards Organization(ISO)-approved approach for determining LOD in gas concentration measurements, using a GC equipped with a discharge ionization detector (DID) and a dynamic dilution system. We employ a gas mixture certified reference material (CRM) of CO, CH4, and CO2 at various concentrations to generate calibration curves for each gas. Subsequently, we estimate the LODs for each gas using the Hubaux-Vos method. Surprisingly, our findings indicate a notable difference between the LODs calculated using the Hubaux-Vos method and those confirmed through experiments. This highlights the importance of critically examining the theoretical foundations of LOD determination. We strongly recommend researchers to scrutinize the principles guiding LOD determination. The method proposed in this study offers an effective way to rigorously validate theoretical approaches for estimating LODs in gas concentration measurements using GC.


Assuntos
Limite de Detecção , Cromatografia Gasosa/métodos , Calibragem , Padrões de Referência , Técnicas de Diluição do Indicador
4.
J Chromatogr A ; 1720: 464798, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38502990

RESUMO

We present a new chromatogram decomposition method for Gas Chromatography (GC) which represents a chromatogram as a sum of template functions inspired by the analytic solution of mass balance equation. The proposed method starts by approximating GC response of a single gas by these template functions. Consequently, it utilizes the temporal translation and dilation of this approximate response to approximate GC responses of other gases of interest. The results are demonstrated on lab data using calibration bottles containing mixtures of C1-C5. Correlation of the amplitudes of the decomposed responses and injected concentrations indicates linear calibration curves are sufficient to estimate C1-C5 concentrations. The performance of the method is demonstrated by a ratio test where a calibration bottle with C1 concentration 300 times larger than C2 and C3 concentrations is injected into GC.


Assuntos
Gases , Calibragem , Cromatografia Gasosa/métodos , Gases/análise
5.
J Chromatogr A ; 1721: 464823, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38547679

RESUMO

This paper reports a method for determining the oil absorption value of inorganic powder based on tracer-assisted headspace gas chromatographic (HS-GC) technique. The method was carried out by adding 25 µL droplet of toluene-Dioctyl Phthalate solution onto the surface of 1.0 g inorganic powder, then sealing the headspace vial and shaking it to make the powder spherical. The amount of toluene that not been adsorbed by inorganic powder was quantified using HS-GC with the optimal equilibrium temperature and time conditions of 100 °C and 7 min, respectively. A new mathematical model shows that the oil absorption value can be determined from the signal of toluene. The results show that the employed method has good precision (the relative standard deviation < 3.6 %) and accuracy (R2 = 0.993). This method is simple and accurate, and can be an reliable tool for testing the oil absorption value of inorganic powder sample.


Assuntos
Tolueno , Pós , Cromatografia Gasosa/métodos , Temperatura , Tolueno/análise
6.
Methods Mol Biol ; 2789: 75-83, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38506993

RESUMO

Various organic solvents are widely used in the manufacturing, processing, and purification of drug substances, drug products, formulations, excipients, etc. These solvents must be removed to the lowest amount permitted, as they do not possess any therapeutic advantages and may cause undesirable toxicities. Therefore, a rapid and sensitive analytical method for the quantitation of residual solvents is needed. The following chapter presents a static headspace gas chromatographic (HSGC) method for determining the concentration of common residual solvents in various nanoformulations. An efficient and sensitive HSGC method has been developed using PerkinElmer's headspace autosampler/gas chromatographic system with a flame ionization detector (FID) and validated according to the International Conference for Harmonization (ICH) guideline Q3C. The method validation indicates that the method is specific, linear, accurate, precise, and sensitive for the analyzed solvents. The method is suitable for the analysis of 13 residual solvents (methanol, ethanol, acetone, diethyl ether, 2-propanol, acetonitrile, 1-propanol, ethyl acetate, tetrahydrofuran, dichloromethane, chloroform, 1-butanol, and pyridine) and utilizes an Elite 624 Crossbond 6% cyanopropylphenyl, 94% dimethylpolysiloxanes column with helium as a carrier gas.


Assuntos
Etanol , Metanol , Cromatografia Gasosa/métodos , Solventes/química , Ionização de Chama , Metanol/análise
7.
Artigo em Inglês | MEDLINE | ID: mdl-38460448

RESUMO

This work reports the characterization of the lipidic fraction of seven species of marine organisms gathered along the shoreline of the Po Delta Park of Emilia-Romagna Region (Italy) and of the north Adriatic Sea. Two species of oysters (Crassostrea gigas and Ostrea edulis), two species of clams (Chamelea gallina and Ruditapes philippinarum), one species of mussel (Mytilus galloprovincialis), one species of macroalgae (Ulva rigida), and one species of spiny dogfish (Squalus acanthias) were analyzed to characterize their fatty acids profile and related nutritional value. The lipid fraction was simultaneously extracted and transesterified into fatty acid methyl esters (FAMEs) by using a recently developed one-step microwave-assisted extraction/derivatization (MAED) method. The obtained FAMEs extract was analyzed by a rapid comprehensive multidimensional gas chromatography (GC × GC) method (30 min). The system was equipped with a reverse set of columns (polar × non-polar) connected through a reversed fill/flush flow modulator. The GC × GC system was coupled with a flame-ionization detector (FID) for both qualitative and quantitative purposes. The MAED- GC × GC-FID methodology was suitable in the context of samples containing high percentages of omega-3 PUFA. A total of 82 FAMEs were tentatively identified using standards, literature data, and the two-dimensional plot location. FAME profiles obtained with the proposed approach were comparable with reference methods (AOCS Ce 2b-11), showing no significant differences. Moreover, to determine the food nutritional value of the samples investigated, the most common nutritional indices (index of atherogenicity, index thrombogenicity, hypocholesterolemic/hypercholesterolemic ratio, health-promoting index, unsaturation index, and the fish lipid quality index) were calculated from FAME profiles. Among the samples investigated, Squalus acanthias presented the best nutritional score, while Ruditapes philippinarum had the worst score in 3 out of 6 indices.


Assuntos
Organismos Aquáticos , 60578 , Ácidos Graxos , Ulva , Animais , Ácidos Graxos/análise , Ionização de Chama/métodos , Micro-Ondas , Cromatografia Gasosa/métodos
8.
Artigo em Chinês | MEDLINE | ID: mdl-38538245

RESUMO

As a rapid, accurate and efficient analytical technique, gas chromatography is widely used in the detection of volatile organic compounds and inorganic small molecule toxins, and it is the main analytical method in the national testing standards for occupational health. The existing effective national standards of gas chromatography for the detection of some substances have low column efficiency, high toxicity of reagents, poor correlation of the standard curve and low desorption efficiency and other problems, some of which can be solved through method improvement. At the same time, with the use of new materials and new processes, new types of toxic substances are emerging, and there are still many occupational disease hazards of limited value without supporting detection methods, gas chromatography can be applied to the detection of some toxic substances to better complement the vacancy of China's occupational health detection methods. This paper analyzes the current situation of the application of gas chromatography in occupational health testing standards, discusses the improvement of some of these methods, and helps to promote the application and development of gas chromatography in occupational health testing.


Assuntos
Poluentes Ocupacionais do Ar , Saúde Ocupacional , Poluentes Ocupacionais do Ar/análise , Local de Trabalho , Cromatografia Gasosa/métodos , China
9.
J Chromatogr A ; 1719: 464770, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38422708

RESUMO

A thermal desorber (TD) can be used in different ways to introduce samples in a gas chromatographic (GC) system. Besides its conventional use where the collected analytes are released from the sorbent in the sample tube, direct dynamic desorption (DDD) is an interesting option where a solid sample is put directly in the TD tube. However, since no sorbent is used for the sample, proper calibration is not straightforward. This issue was investigated in the present work using offline liquid calibration (OLC) and inline liquid calibration (ILC). Unexpectedly, ILC yielded a lower response than OLC. This could be related to the adsorption kinetics of the analytes and water on the cold trap of the TD. More insight was gained performing double injection ILC experiments with toluene as diluent for the analytes and injecting water before or after the toluene solution. This revealed a clear influence of the diluent. The influence of water was further explored applying two cold trap temperatures (4 °C and -30 °C). Inserting a LiCl trap in the TD tube to capture the water was found to be an effective solution for the problem. Finally, quantitative aspects of this approach were demonstrated.


Assuntos
Temperatura Baixa , Água , Calibragem , Cromatografia Gasosa/métodos , Água/química , Tolueno
10.
J Chromatogr A ; 1717: 464711, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38320433

RESUMO

The solvation parameter model uses five system independent descriptors to characterize compound properties defined as excess molar refraction, E, dipolarity/polarizability, S, hydrogen-bond acidity, A, hydrogen-bond basicity, B, and the gas-liquid partition constant at 25 °C on n-hexadecane, L, to model transfer properties in gas-condensed phase biphasic systems. The E descriptor for compounds liquid at 20 °C is available by calculation using a refractive index value while E for solid compounds at 20 °C and the S, A, B, and L descriptors are determined by experiment. As a single-technique approach, it is shown that with up to 20 retention factor measurements on four columns comprising a poly(siloxane) containing methyloctyl or dimethyldiphenylsiloxane monomers (SPB-Octyl or HP-5), a poly(siloxane) containing methyltrifluoropropylsiloxane monomers (Rtx-OPP or DB-210), a poly(siloxane) containing bis(cyanopropylsiloxane) monomers (HP-88 or SGE BPX-90), and a poly(ethylene glycol) stationary phase (DB-WAXetr or HP-INNOWAX) are suitable for assigning the S, A, and L descriptors. Using the descriptors in the updated WSU compound descriptor database as target values the average absolute error in the descriptor assignments for 52 varied compounds in the temperature range 60-140 °C was 0.072 for E, 0.016 for S, 0.008 for A, and 0.022 for L corresponding to 30 %, 3.5 %, and 0.6 % as a relative average absolute error for E, S, and L, respectively. For the higher temperature range of 160-240 °C and 34 varied compounds that are liquid at 20 °C the average absolute error for the S, A and L descriptors was 0.026, 0.020, and 0.031, respectively, with the largest relative average absolute error for S of 3.2 % (< 1 % for the L descriptor). For 35 varied compounds that are solid at 20 °C the relative absolute error for the E, S, A, and L descriptors in the higher temperature range was 0.068, 0.035, 0.020, and 0.020, respectively, with a relative average absolute error for E (6.5 %), S (3.5 %) and L (0.88 %). The S, A, and L descriptor can be accurately assigned on the four-column system over a wide temperature range. The E descriptor for solid compounds at 20 °C exhibits greater variability than desirable. The B descriptor cannot be assigned by the four-column system, which lack hydrogen-bond acid functional groups, and is only poorly assigned on the weak hydrogen-bond acid ionic liquid column SLB-IL100.


Assuntos
Líquidos Iônicos , Siloxanas , Siloxanas/química , Polietilenoglicóis , Cromatografia Gasosa/métodos , Hidrogênio
11.
J Chromatogr A ; 1718: 464718, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38335883

RESUMO

Chemical attribution is a vital tool to attribute chemicals or related materials to their origins in chemical forensics via various chemometric methods. Current progress related to organophosphorus nerve agents (OPNAs) has mainly focused on the attribution of chemical sources and synthetic pathways. It has not yet been applied in matching exposed biological samples to their sources. This work used chemical attribution to explore organic impurity profiles in biological samples exposed to various OPNAs. Chemical attribution was first used to identify the exposure source of biological samples based on the full-scan data via comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometer (GC × GC-TOFMS). Taking peak area as the only variable, it can quickly match exposed samples to their sources by applying unsupervised or supervised models, screen difference compounds via one-way ANOVA or t-tests, and then identify valuable impurities that can distinguish different types of exposed samples. To further obtain the impurity profile only applicable to a certain weapon' samples, the irrelevant components were removed via conventional methods. The findings showed there were 53 impurities that can promote distinguishing six groups of OPNA exposed samples, as well as 42 components that can be used as valuable impurities to distinguish class G and class V samples. These were all unique impurities that appear in a certain weapon' samples. The outcomes can be a reference for tracing the source for OPNA-exposed samples, which was beneficial to the further development in source matching of forensic samples. Moreover, the chemical attribution for impurity profiles in biological samples after weapons exposure may inspire research into the characteristics of impurity profile in biological samples as well as practical applications of chemical attribution for OPNA-exposed samples, that may expand potential biomarkers and break the limits of existing markers in the future.


Assuntos
Agentes Neurotóxicos , Espectrometria de Massas , Cromatografia Gasosa/métodos
12.
Chem Biodivers ; 21(3): e202301795, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38268034

RESUMO

This work reports the first example of employing ester-functionalized pillar[5]arene (P5A-C10-OAc) stationary phase for gas chromatography (GC) separations. The as-fabricated P5A-C10-OAc column achieved improved column efficiency of 4270 plates/m and separation performance in contrast to the P5-C10-Br column. The P5A-C10-OAc column showed good separation performance for a wide range of analytes such as alkanes, bromoalkanes, ketones, fatty acid methyl esters, aldehydes, alcohols, halobenzenes, anilines, phenols, naphthalenes, and showed sharp and symmetrical peak shapes for analytes that are liable to peak-tailing in GC analysis. As testified by the challenging isomer mixtures (bromonitrobenzene, chloronitrobenzene, bromobenzaldehyde, chlorobenzaldehyde, nitrobenzaldehyde), the P5A-C10-OAc column exhibited comprehensively higher separation capability than the P5A-C10-Br, P5A-C10 and commercial HP-35 columns. This work demonstrates the great potential of pillararene-based stationary phases as a new type of stationary phases for GC separations.


Assuntos
Álcoois , Compostos de Anilina , Reprodutibilidade dos Testes , Cromatografia Gasosa/métodos , Compostos de Anilina/química , Isomerismo
13.
J Chromatogr A ; 1717: 464665, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38281342

RESUMO

For method development in gas chromatography, suitable computer simulations can be very helpful during the optimization process. For such computer simulations retention parameters are needed, that describe the interaction of the analytes with the stationary phase during the separation process. There are different approaches to describe such an interaction, e.g. thermodynamic models like Blumberg's distribution-centric 3-parameter model (K-centric model) or models using chemical properties like the Linear Solvation Energy Relationships (LSER). In this work LSER models for a Rxi-17Sil MS and a Rxi-5Sil MS GC column are developed for different temperatures. The influences of the temperature to the LSER system coefficients are shown in a range between 40 and 200 °C and can be described with Clark and Glew's ABC model as fit function. A thermodynamic interpretation of the system constants is given and its contribution to enthalpy and entropy is calculated. An estimation method for the retention parameters of the K-centric model via LSER models were presented. The predicted retention parameters for a selection of 172 various compounds, such as FAMEs, PCBs and PAHs are compared to isothermal determined values. 40 measurements of temperature programmed GC separations are compared to computer simulations using the differently determined or estimated K-centric retention parameters. The mean difference (RSME) between the measured and predicted retention time is less than 8 s for both stationary phases using the isothermal retention parameters. With the LSER predicted parameters the difference is 20 s for the Rxi-5Sil MS and 38 s for the Rxi-17Sil MS. Therefore, the presented estimation method can be recommended for first method development in gas chromatography.


Assuntos
Cromatografia Gasosa , Cromatografia Gasosa/métodos , Simulação por Computador , Termodinâmica , Temperatura , Entropia
14.
Food Res Int ; 177: 113848, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225123

RESUMO

Descriptive sensory analysis was paired with temporal check-all-that-apply gas-chromatography olfactometry (TCATA GC-O) to compare differences in perceived flavour and volatile odour activity across a series of commercial plant-based meat analogues (PBMAs) versus conventional beef products. Multiple factor analysis separated PBMAs in two clusters along the first principal axis. The first cluster, rated higher in meaty flavour and odour, also showed higher citation proportions of sulfurous odourants. In contrast, the second cluster, higher in off odour and flavour, had higher citation proportions for fatty / legume odourants. Key odourants correlated with meaty flavour and odour were putatively identified as 2-methyl-3-furanthiol, dimethyl trisulfide, and furfuryl mercaptan while compounds correlated to off flavour and odour were putatively identified as (E,E)-3,5-octadien-2-one, 2-undecanol, and (E,E)-2,4-decadienal. No correspondence was found between PBMA odour-activity and source protein, suggesting that volatile flavour production in PBMAs is derived primarily from exogeneous flavouring materials or precursors rather than the base protein material. Contributions of lipid-protein interactions to overall flavour differences is further suggested by the putative discovery of 5,6-dihydro-2,4,6-trimethyl-4H-1,3,5-dithiazine odour activity in several meat samples profiled.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Animais , Bovinos , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Carne/análise , Cromatografia Gasosa/métodos , Paladar , Aromatizantes/análise
15.
J Chromatogr A ; 1715: 464600, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38176352

RESUMO

An automated implementation for a subfractionation of mineral oil aromatic hydrocarbons (MOAH) into a mono-/di-aromatic fraction (MDAF) and a tri-/poly-aromatic fraction (TPAF) is presented, which is highly demanded by the European Food Safety Authority (EFSA) respecting the genotoxic and carcinogenic potential of MOAH. For this, donor-acceptor-complex chromatography (DACC) was used as a selective stationary phase to extend the conventional instrumental setup for the analysis of mineral oil hydrocarbons via on-line coupled liquid chromatography-gas chromatography-flame ionization detection (LC-GC-FID). A set of six new internal standards was introduced for the verification of the MOAH fractionation and a quantification of MDAF and TPAF, respectively. The automated DACC approach was applied to representative petrochemical references as well as to food samples, such as rice and infant formula, generally showing well conformity with results obtained by state-of-the-art analysis using two-dimensional GC (GCxGC). Relative deviations of DACC/LC-GC-FID compared to GCxGC-FID methods regarding the ≥ 3 ring MOAH content ranged between -50 and +6 % (median: -2 %, all samples, only values above limit of quantification). However, crucial deviations mainly result from "border-crossing" substances, e.g., dibenzothiophenes or partially hydrogenated MOAH. These substances can cause overestimations of ≥ 3 ring MOAH fraction during GCxGC analysis due to co-elution, which is mostly avoided using the DACC approach. Furthermore, the DACC approach can help to minimize underestimations of toxicologically relevant ≥ 3 ring MOAH caused by an unavoidable loss of MOAH during epoxidation, since natural olefins, such as terpenes, predominantly elute in MDAF, which was exemplarily shown for an olive oil and a terpene reference. The presented approach can be implemented easily in existing LC-GC-FID setup for an automated and advanced screening of MOAH to lower the need for elaborate GCxGC analysis also in routine environments.


Assuntos
Hidrocarbonetos Aromáticos , Óleo Mineral , Humanos , Óleo Mineral/análise , Contaminação de Alimentos/análise , Hidrocarbonetos Aromáticos/análise , Cromatografia Gasosa/métodos , Cromatografia Líquida/métodos , Hidrocarbonetos/análise , Terpenos/análise
16.
Electrophoresis ; 45(1-2): 35-54, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37946578

RESUMO

This review covers the know-how of the Grupo de Química Analítica e Quimiometria regarding the analysis of fatty acids by capillary electrophoresis acquired over its 20 years of existence. Therefore, the fundamentals, advantages, and applications of this technique for analyzing different fatty acids in samples such as food, oils, cosmetics, and biological matrices are presented and discussed. Capillary electrophoresis is, thus, shown as an interesting and valuable separation technique for the target analysis of these analytes as an alternative to the gas chromatography coupled to flame ionization detection, as it offers advantages over the latter such as low analysis times, low sample and reagent consumption, the use of a nondedicated column, and simpler sample preparation. In addition, the methods shown in this literature review can be useful for quality control, adulteration, and health-related research by regulatory agencies.


Assuntos
Eletroforese Capilar , Ácidos Graxos , Ácidos Graxos/análise , Eletroforese Capilar/métodos , Cromatografia Gasosa/métodos , Óleos , Contaminação de Medicamentos
17.
J Chromatogr A ; 1714: 464560, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38070304

RESUMO

The Fourier deconvolution ion mobility spectrometer (FDIMS) offers multiplexing and improves the resolving power and signal-to-noise ratio. To evaluate the FDIMS as a detector for gas chromatography for the analysis of complex samples, we connected a drift tube ion mobility spectrometer to a commercial gas chromatograph and compared the performance including resolving power, sensitivity, and linear range using 2,6-di­tert-butylpyridine. Mixed standards were also injected into the tandem system to evaluate the performance under optimized conditions. A complex plant extract sample used as natural flavoring was investigated using the resulting system. The results show that the instrument implemented with the Fourier deconvolution multiplexing method demonstrated higher performance over the traditional signal averaging method including higher resolving power, better limit of detection, and wider linear range for a variety of compounds and natural plant extract flavorings.


Assuntos
Extratos Vegetais , Cromatografia Gasosa/métodos
18.
Biomed Chromatogr ; 38(1): e5756, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37750442

RESUMO

In this study, an analytical method was developed and validated for the assessment of pesticide residues in commonly consumed vegetables and fruits. Fresh samples of apple, green peas, tomatoes, and cucumbers were processed and subjected to analysis using a modified QuEChERS (quick, easy, cheap, effective, rugged, safe) extraction technique. Subsequently, quantification of pesticide residues was conducted utilizing gas chromatography (GC)-electron capture detector. Extraction and cleanup parameters were meticulously optimized, resulting in a modification of the original QuEChERS method. This modification aimed to reduce solvent consumption, making the study more environmentally friendly. The developed method was validated in terms of selectivity, specificity, linearity, precision, and accuracy by following the SANTE guidelines. Calibration curves showed good linearity (r > 0.99) within the test range. Precision was evaluated by intra- and inter-day experiments with an acceptable relative standard deviation (<20.0%). Recovery was assessed at the limit of quantification level and was observed to fall within the range of 70%-120%, with relative standard deviations below 5.45%. The validated method presented here can be applied to analyze pesticide residues in various other vegetables, fruits, and cereals. It is essential for ongoing monitoring of pesticide residues to ensure public safety.


Assuntos
Resíduos de Praguicidas , Resíduos de Praguicidas/análise , Verduras/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Frutas/química , Cromatografia Gasosa/métodos
19.
J Chromatogr A ; 1713: 464569, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38091845

RESUMO

In steam cracking, upstream pyrolysis oil hydroprocessing, and in many downstream processes, olefinic content is key to assess process performance and process safety risk associated with highly exothermic reactions. When looking to plastic pyrolysis oils as a potential feedstock, as well as downstream products such as pyrolysis gasoline (pygas), these materials contain unsaturated hydrocarbons which are not present in fossil feedstocks. Pygas is a product of pyrolysis and exhibits a large number of chemical structural similarities with plastic pyrolysis oils, especially in terms of olefins structure. Quantification of the unsaturation content (olefins and di-olefins) is extremely important in industry, hence the focus of this manuscript. Detailed hydrocarbon analysis with flame ionization detection is inadequate to fully characterize the hydrocarbon composition of such samples, especially when peaks are closely eluting, or even co-eluting. In this study, the gas chromatography coupled to vacuum ultraviolet (GC-VUV) detection method previously described for the analysis of liquid hydrocarbon streams1 and plastic pyrolysis oils2 has been compared with comprehensive gas chromatography (GC × GC) and the industry standard for olefin quantification (i.e., bromine number titration). Although based on different methodologies, a correlation between the olefin content obtained from GC-VUV and the bromine number titration method is hereby presented.


Assuntos
Alcenos , Gasolina , Gasolina/análise , Alcenos/análise , Bromo , Vácuo , Pirólise , Cromatografia Gasosa/métodos , Óleos/análise , Hidrocarbonetos/análise
20.
J Chromatogr A ; 1714: 464526, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38071876

RESUMO

Over the last years, inverse gas chromatography (IGC) proved to be a versatile and sensitive analytical technique for physicochemical properties. However, the comparability of results obtained by different users and devices remains a topic for debate. This is the first time, an interlaboratory study using different types of IGC instruments is reported. Eight organizations with different IGC devices defined a common lab measurement protocol to analyse two standard materials, silica and lactose. All data was collected in a standard result form and has been treated identically with the objective to identify experimentally observed differences and not potentially different data treatments. The calculated values of the dispersive surface energy vary quite significantly (silica: 22 mJ/m2 - 34 mJ/m2, lactose 37 mJ/m2 - 51 mJ/m2) and so do the ISP values and retention volumes for both materials. This points towards significant and seemingly undiscovered differences in the operation of the instruments and the obtained underlying primary data, even under the premise of standard conditions. Variations are independent of the instrument type and uncertainties in flow rates or the injected quantities of probe molecules may be potential factors for the differences. This interlaboratory study demonstrates that the IGC is a very sensitive analytical tool, which detects minor changes, but it also shows that for a proper comparison, the measurement conditions have to be checked with great care. A publicly available standard protocol and material, for which this study can be seen as a starting point, is still needed to judge on the measurements and the resulting parameters more objectively.


Assuntos
Lactose , Dióxido de Silício , Propriedades de Superfície , Lactose/química , Reprodutibilidade dos Testes , Cromatografia Gasosa/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...